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0 引言

大学英语等级考试一直以来都是高校学生参与

度最高的全国性考试，其考试成绩不仅反映了学生的

英语学习能力，其证书也是高校毕业生求职应聘中所

必备的。

评估高校各专业整体英语应试水平，对于高校管

理层在专业层面上提出相关英语教学改革措施极为

重要。Bootstrap与 Jackknife是抽样调查中常用的重

采样方法，Jackknife是由Quenouille[1,2]（1949/1956）作

为减少系列相关系数估计量偏倚的一种方法提出的，

后来逐渐成为复杂样本方差估计的一种重要方法。

Bootstrap是由B.Efron[3](1979)在 Jackknife的基础上提

出的一种利用重抽样方法对总体参数进行估计的统

计方法。吕萍[4]（2017）指出在数据分析中,若忽视层、

群等抽样设计的复杂性,直接利用调查数据按照传统

数据分析方法,容易得出错误的结论,尤其是涉及标准

误的估计。Bootstrap方法的优势在于对小样本进行

评估时,可极大地降低评估样本不足对评估结果的影

响[5]。该方法也在估计中存在些许不足，主要体现在

重抽样都是在已知的样本观测数据中进行的，这使得

自主样本与原样本的相似度较高，并且样本量越小，

其相似度就越高，估计结果与真实分布的差异性也会

越大[6]。Jackknife方法在方差分量估计和标准误估计

上都较为准确，且其估计的准确性不随数据类型、研
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究设计和方差分量的不同而产生波动，具有较强的稳

健性[7]。Jackknife方法不足之处主要体现在：估计总

体统计量时只利用了很少的信息，各采样样本之间的

差异很小，每两个Jackknife样本中只有两个单一的观

测值不同。本文在估计总体样本均值的过程中，考虑

到 Jackknife 算法与 Bootstrap 算法存在的不足，提出

Bootstrap-Jackknife 算法，得到了更接近于总体样本

均值的估计值。

1 数据与估计方法

1.1 数据来源与处理

本文采集广州华商学院各专业学生在2017学年

的四级成绩数据，共计9860条有效数据，并对收集的

数据进行对数化处理，数据对数化可以使得样本数据

更加光滑，消除异方差,同时减小数据波动范围。

1.2 Normal

将采集得到的观测样本 x1,⋯,xn当做总体样本的

近似，通过观测样本得到各样本统计量值以估计总体

统计量，其中总体标准差的无偏估计如式⑴：

se = 1
n - 1∑i = 1

n ( xi - x̄ )2 ,-x = 1n∑i = 1
n

xi ⑴
1.3 Bootstrap

Bootstrap是一种著名的方差估计方法，其思想是

通过重复抽样来估计总体分布。具体来说就是将得

到的样本Fn ( x )当做总体F ( x )的近似，θ�是 θ的一个估

计，通过从得到的样本中重复有放回抽样生成经验累

积分布函数F *
n ( x )，对生成的F *

n ( x )样本进行相应计算

得到 θ� *，利用一系列 θ� *实现 θ�的置信区间评定。具体

步骤如下：

⑴ 从观测样本 x1,⋯,xn中有放回地抽样生成样本

x*(b) = ( x*1,⋯,x*n )；
⑵ 对第 b个Bootstrap样本计算估计值 θ� (b)，这里 b

的范围为1-2000，本文为了使全部的数据尽可能被采

集，使得总体统计量的估计结果更为稳健，规定抽样

次数B = 2000；
⑶ 对一个估计量 θ�的标准差进行Bootstrap估计

就是将Bootstrap重复实验 θ� (1),⋯,θ� (B )的样本标准差作

为估计值，如式⑵：

se (θ� * ) = 1
B - 1∑b = 1

B (θ� (b) - ----θ(*) )2 ,----θ� (*) = 1
B∑b = 1

B (θ� (b) ) ⑵
1.4 Jackknife

Jackknife可用于总体估计量的不确定估计，旨在

减少估计的偏差。其思想为“去一”抽样，假设获取样

本样本量为 n，在第 i次抽样中去除第 i个样本数据 i =
(1,2,...,n )，用剩下的 (n - 1)个数据作为抽样样本计算

θ� ( i )，分别对生成的 n个样本计算相应的样本统计量，如

此得到 θ� (1),⋯,θ� (b)，从而实现总体统计量的置信区间估

计。具体步骤如下：

⑴ 从观测样本 x1,⋯,xn 中做 i次 Jackknife 抽样，

生成第 i个Jackknife样本 ( x1,⋯,xi - 1,xi + 1,⋯,xn )；
⑵ 对n个Jackknife样本计算估计值θ� (1),θ� (2 ),⋯,θ� (n )；
⑶ 当利用Jackknife对θ进行标准差估计时，如式⑶：

se jack - knife = n - 1
n ∑i = 1

n (θ� ( i ) --θ� (.) )2 ⑶
其中

n - 1
n

因子的原因是：

当 θ� = -x时，var ( -x ) = var ( x ) /n，因此
n - 1
n

因子

使得 se jack - knife成为无偏估计量。

1.5 Bootstrap-Jackknife

在实际应用中，Bootstrap对估计量的相关估计值

具有随机性，即每一次运用 Bootstrap算法抽样得到

的估计值并不相同，而使用 Jackknife 对统计量进行

估计时，各采样的样本之间的差异太小。本文考虑到

Bootstrap与 Jackknife的不足之处，结合两种算法，创

新性地进行相关方差估计。采用Bootstrap选取多组

样本，随后采用Jackknife对每组样本分别进行均值与

标准差的估计，结合实际训练数据发现该方法得到的

估计值稳健度更高。本文实现Bootstrap-Jackknife的

具体步骤如下：

⑴ 对 于 观 测 样 本 x1,⋯,xn，进 行 B = 2000 次

Bootstrap抽样，每次抽样n个样本；

⑵ 假设 i = 1:n，每次选取上一步所有Bootstrap样

本中不含有 xi的样本，并重新计算 θj ( i )；
⑶ 对第 j个Bootstrap样本生成的所有 θj ( i )计算相

关估计值与标准差，标准差如式⑷：

se j = n - 1
n ∑i = 1

n (θ� ( i ) --θ� (.) )2 ⑷
⑷ 最后对估计量 θ�的标准差进行Bootstrap估计，

将 se (θ� 1 ),⋯, se (θ� j ),⋯, se (θ� B ),的样本标准差作为估计

值，得到 se Bootstrap - Jackknife如式⑸：

se Bootstrap - Jackknife = 1
B - 1∑j = 1

B ( se (θ� j ) - - -- -- --- --
se (θ� (*) ) )2 ,

- -- -- --- --
se (θ� (*) ) = 1B∑j = 1

B ( se (θ� j )) ⑸
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2 实例分析

分别采用Normal、Bootstrap、Jackknife、Bootstrap-

Jackknife方法，对实际样本数据进行均值估计，实际

训练样本为该校各专业学生在2017学年的四级成绩

对数。估计结果对比情况如图1所示。

由图1数据可以看出：①对于Normal、Jackknife与

Bootstrap-Jackknife这三种方法计算出的均值估计量

仅有细微差异，而Bootstrap得到的均值估计值与其他

三种方法得到的均值估计值相差较大；②对于标准差

估计，Bootstrap-Jackknife 估计得到的标准差要远远

小于其他三种方法估计的标准差，这说明在对总体

均值的估计中，Bootstrap-Jackknife的估计误差最小，

即利用该方法得到的均值用来估计总体均值，其精度

最高。另外Bootstrap与Jackknife的标准差估计值几乎

重合为一条折线且远小于普通法的标准差估计值，这

说明利用Bootstrap与Jackknife对估计量进行估计，其

可信度要高于普通法得到的估计量值。

为了更明显的显示四种方法估计样本均值的差

异，本文将四种方法得到的样本数据均值估计值进行

排序，具体排序结果如表1所示(仅列举部分)。

表1 四种方法估计的均值排序对比

英语

国际商务

会计学(ACCA班)

...

环境设计

视觉传达设计

产品设计

Bootstrap-Jackknife

1

2

3

...

29

30

31

Normal

1

2

3

...

30

31

29

Bootstrap

1

2

3

...

29

31

30

Jackknife

1

23

5

...

17

29

20

为比较Bootstrap-Jackknife方法与其他三种方法

排序结果之间的差异，本文将各专业 Bootstrap-

Jackknife排序结果与其他三种方法得到的排序结果做

差值处理，并进行绝对值运算，依据各差值结果绘制

箱线图，如图2所示。

图2 各专业排序差绝对值箱线图

结合表1排序数据与图2箱线图可以看出：第一，

Normal与Bootstrap-Jackknife在专业排序上的差异甚

微，Bootstrap-Jackknife与Jackknife在专业排序上的差

异最为显著，这说明就均值估计而言，Jackknife估计的

稳定性并不高；第二，就排序数据上来看，该校英语四

级应试能力前三的专业为英语、国际商务和会计学

（ACCA班），而英语四级应试能力较差的专业为环境

设计、视觉传达设计、产品设计这三个艺术专业。

3 结论

本文基于广州华商学院2017学年各专业学生四

级 成 绩 数 据 ，运 用 Normal、Bootstrap、Jackknife 和

Bootstrap-Jackknife四种方差估计方法分别评估该校

图1 四种方法估计在实际数据上的效果对比图

(下转第80页)
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均衡，是一种均匀的密集采样，导致训练困难。

4 结束语

本文选用的YOLOv3和 SSD框架可实现四种阔

叶材高效、准确辨识，YOLOv3框架辨识准确率更高，

而SSD框架用时更短。总体而言，SSD对四种阔叶材

做到了更高效自动辨识，可以在保证辨识的正确率

前提下能够更快的处理样本，提高了阔叶材的识辨识

效率。

本文识别准确率没有达到100%，综合分析与图像

特点有关。本文只对四种木材样本进行研究，阔叶材

种类相对单一，但是每种阔叶材采集的样本量较大，

结果更具有适应性，下一步将从提高样本的多样性入

手，增加不同阔叶材材种的训练集，从而提高模型的

抗干扰和泛化能力，使其更适应于更多阔叶材材种的

辨识。
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各专业四级总体应试水平；对比估计结果发现：

Bootstrap-Jackknife算法在估计总体均值方面上估计

误差最低，在涉及排序问题上，Jackknife算法的排序稳

定性最低。研究结果表明，Bootstrap-Jackknife算法可

更精确、稳定的评估高校各专业总体英语应试水平，

从而为高校在专业层面上制定科学的英语学习方式和

可操作的实施办法[8]提供参考。
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