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(3) Aft4EHSpark SQL

Spark SQL: Relational Data Processing in Spark

Michael Armbrust’, Reynold 5. Xin', Cheng Lian', ¥in Huai', Davies Liu', Joseph K. Bradley’,
Xiangrui Meng’, Tomer Kaftan®', Michase! J. Franklin, Ali Ghodsi’, Matei Zaharia'

'Databricks inc.  “MITCSAIL  ‘AMPLab, UC Berkeley

While the popularity of relational systems shows that users often
prefer writing declarative queries, the relational approach is insuffi-
cient for many big data applications. First, users want to perform
ETL to and from various data sources that might be semi- or un-
structured, requiring custom code. Second, users want to perform
advanced analytics, such as machine learning and graph processing,
that are challenging to express in relational systems. In practice,
we have observed that most data pipelines would ideally be ex-
pressed with a combination of both relational queries and complex
procedural algorithms. Unfortunately, these two classes of systems—
relational and procedural—have until now remained largely disjoint,

ERAEIES ST RIKEIRRIIRE
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Spark SQL: Relational Data Processing in Spark

Michael Armbrust', Reynold S. Xin', Cheng Lian", Yin Huai', Davies Liu’, Josegh K. Bradley',
Xiangrui Meng', Tomer Kaftan®, Michael J. Franklin®, Ali Ghodsi', Matei Zaharia'

'Databricks inc.  “MITCSAIL  *AMPLab, UC Berkeley

Spark SQL bridges the gap between the two models through two
contributions. First, Spark SQL provides a DataFrame API that
can perform relational operations on both external data sources and
Spark’s built-in distributed collections. This API is similar to the
widely used data frame concept in R [32], but evaluates operations
lazily so that it can perform relational optimizations. Second, to
support the wide range of data sources and algorithms in big data,

Spark SQL introduces a novel extensible optimizer called Catalyst.

Catalyst makes it easy to add data sources, optimization rules, and

ERAEIES ST RIKEIRRIIRE
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(Pipellne) APl, BAU0T:

-HiZTEH: sANEIEE, ok, [, RSHimEhEE;
A4FIHMETH: %?ETEHR (L. B&2E$D1$T§=:_E
“imIKZ(Pipeline): FATHa%E. ﬁEﬁFﬂlﬂiﬁQm]ﬁ%—?—y__1’Euu,E|’\J__E-;
AR (REFIINSESE. AR

SCHTH: ML T, FuEIESTE,

TS



22 7.4.4 BEFAENSHIITEIESESpark

9.Spark MLIib

MLIib B RISz 4P R WA LRI [ARR: 538, [BlIE, =K

A ENTSE

= AR

Classification.

g

m = ..
SVM, DecisionTree,

%3]
RandomForest, GBT. NaiveBayes.
MultilayerPerceptron, OneVsRest

e Clustering, KMeans,

, GaussianMixture., LDA.
B PowerlterationClustering.

BisectingKMeans

V7774 R AEUESRIT R IASIERT R

LogisticRegression(with Elastic-Net).

RELLEIRE

Regression,
LinearRegression(with Elastic-
Net). DecisionTree,
RandomFores., GBT.
AFTSurvivalRegression,
IsotonicRegression

Dimensionality Reduction, matrix
factorization, PCA, SVD. ALS,
WLS

86



2> 7.4.5 TensorFlowOnSpark

TS

‘TensorFlow2— N HERY. EFPythonfIHEsx2IiELZE, BEHRGNRATFF AR, F
FEF DR, SR, EFERFIBAESVIESE TTEEFENNA, 288
AR EIHEZR, TensorFlow2— 1 RFEEUEREl (Data Flow Graph) . FHF
HETTEFFRIGE, FUEREPIIT R (Nodes) FRREFRE, EHFAIENIZER
T RBRIHEERRNSZ4EIEE, BlskE(Tensor),

FEITEEEF, wKEMNEN—mREIEIS—im, XEEXPMTEREA
“TensorFlowN[RE, —EHEINIGIIFIEREERY, TREMDERIZMTEIR
BB H TR TEE, FIFTensorFlowE,| e[ LAEZSTES FEFSIESHS
&, WMCPUELGPU). BT, IRFZs. EEBMETEE.



2> 7.4.5 TensorFlowOnSpark

TS

RE TensorFlowll i 7 H I HINE{THEZR, (BEBEIATRYIREE
FFIERRIME AR BBAKRYF, a5 TensorFlowIAZIIEREIAEH

jé E/Jpa rk/YARN) , HABFREENSESZHEINE, KT BRIFEE
RAJEIRA,

*TensorFlowOnSparkKiii H 2/ Yahoo R — 1N AR, 8ElTensorFlow
5SSparkiS5E—i2fER, J9Apache Hadoop#llApache Spark&Rfm=Ral#
ERREFIINEE. ([FSparkBeisF A TensorFlowliE REZSIFIGPUNE
ITEHEE. ERER NMIBSIEFEESE (REEISEH
Hadoop/Spark&EF) , Yahooy T RIS SEEHE R ETERNIRHA & 7
TensorFlowOnSparkliiH, TensorFlowOnSparkBai# AT IiEEFAB =1
Hadoop&t, EEHITARMERDHIVREZES.



2> 7.4.5 TensorFlowOnSpark

TensorFlowOnSpark{Eig1THS 775 E & 1 Spark A B AI4FEFN TensorFlowdy
E1THE, AKRIE T WmERFEESMN, FELABETRDIESCREITE

R IEFENTensorFlowfeE. 7N HYTFONSparkiZEFEEENSS SparkSQL.
MLIibFIE it Spark EE—EE T/EABEURE (WEFR) .

TensorFlowOnSpark
TFOnSpark | CaffeOnSpark Milib SHIVke %
(AREEES | (ERREZED | (ERSEREED parkSQL
CIi [ i 8>
Spark

e ——
Hadoop%i 4 4

TensorFlowOnSpark5 SparkBY5Ehk;

TS



2> 7.4.5 TensorFlowOnSpark

TensorFIowOnSparkE’JVk?’y’Ed"]i?ﬁJ%% (ilﬂlﬁ)ﬁ_-) Spark Driverf2F7
HA=S5TensorFlowIEBHEXAVITERIAE, Hi iJr,EE\Ft%{%xEJ"—A
TensorFlowEEEHIETE TSparkJ: BE1EE Spark ExecutorEFlF'rJJ

TensorFlowh FiERr, PA/SIBIIgRPCEYRDMASTUHITEIRIGIE S E,
B B S DA O DR VCTAN e E
V/ ‘ » N ;
Spsrk Executor Spsrk Executor Spsrk Executor Spsrk Executor

Parameter
Server

TensorFlow
Core

gRPC | RDMA

TensorFlow Alg

TensorFlow
Core

gRPC | RDMA

TensorFlow Alg

TensorFlow
Core

gRPC | RDMA

TensorFlow Alg

TensorFlow
Core

gRPC | RDMA

[y

A

5

3

B TensorFlowOnSparkiRZ 2844

Data Set on HDES etc.



2> 7.4.5 TensorFlowOnSpark

TensorFlowOnSparkigySparkiy FBfE R EiF4 N EANTTE

(1) FEE: BiETensorFlowsEss, FHEE ExecutoriFAtE FFEE Ix
IimO, BareuRAzH BRNRITRERF;

(2) B5h: T8 Executon#i2_LE&hTensorFlowh R ;

(3) IZR/AHETE: TETensorFlowEEEE 5eRkiR BRI |G ek HETE

(4) XiF): X[FExecutori#iZE EAYTensorFlowN FBfERs, FERETEAL
SN ERZN NS IS TR

TS
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1.Storm{&9

«  Twitter Storm2— a2, FRNS AT ITERSS, Stormy¥yF-
SCATITEAIE N R FHadoopXdFHAMERIE N, Storma] LAEER,
2. AIEGNIEREGE, FSaFSMiREES

. SthoJ;md‘E }E_JL,U’U‘ EMSEHIEERFHITES, MMHAAHEARISE
==

TS



2> 7.4.6 FitEiELEStorm

- TwitterBEBAHERANARNibEc—, TwitterFF&StormiizbiE
EZRBEN T N E AR A RS UESC AT R E K

| S A HE R G |

Storm Cassandra

Twitterf9 9> BB EZRT

TS



2> 7.4.6 it ElESEStorm

2. StormAYF=
o StormA]HFFZMEA, WSCRToHT. E&lzeES. FEiTE.
ITFERPC, FURRRBINEEEIEE
- StormBBLITEEER:
— BE%: Storma] SEBSARFRINEIEER A TES
— BZ[9API: StormBIAPIE(ERH_LRIEER X G 1E
— O R StormiyFH TFEFEE R LU TED hIUERFH
— Bt Stormu] Bal# i THET RER. EFSEMNEFDHED
— AIERERYIE: StormRIEE NEEERRETRAM R
- WEEMRIEES: Storm3ZiF(ERAZMRIEESKEN(TH
— PRIEERE: Stormu] AuESHITEEFIER
— E. FhR: Storm2—FFRIEZSR, nJLARERFER

TS



2> 7.4.6 it ElESEStorm

TS

3.StormAYiESRIRILT
Stormiz{THEFZAV AT, S5HadoopzLl: Hadoopiz{7HIE
MapReducef{E)Nl, MStormiz1THYE“Topology’

BRENESAAERE, FENARER: MapReduce{FHZEST
BiTEFZERIZ T, MTopologylEHrEbIEBEE. (BERIANLRIL)

Storm#1HadoopZRtAZE4-TIRERT M K 5

N A FR Job Topology
ARG JobTracker Nimbus
TaskTracker Supervisor

B0 Map/Reduce Spout/Bolt

ERAEIES ST RIKEIRRIIRE
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2> 7.4.6 FitEiELEStorm

StormEEEFX A “Master—Worker 9B =51, :

— Masteriy HIE{TE “Nimbus’lUG &R (F{LHadoopsHi“JobTracker’)
RREERFSCERD &ZIB. SIWorkern (IS FN AL fE

— Worker FRIz{T8 /8“Supervisor N &18RF, Lo e errElssAT
{E, BNtRIENimbus? \EEEI’JEQEEJ&ZEF‘E)J‘JZHJ:Worke n#tE, — 1"Workerpm 2 E
Bz TEF 1 "Worken#Fg

TS



2> 7.4.6 it ElESEStorm

* Storm{EHZookeepersR{EADZHIVNEAARN, RE=ENimbusFiZA
SupervisorZ [BJRNFTETVELIE. {8B1FZookeeper, FENimbusiHiE
i SupervisonHfEEIMR L, EEIHEEEEE. E ZBIRIRS TR
‘S T{E, {FH{EStormikEiaE

Supervisor
Zookeeper Supervisor
— | Worken##2
Nimbus Zookeeper Supervisor — | WorkenHfE
el A =
Zookeeper Supervisor Workerittz
Supervisor

StormEERE LM EE]

TS



2> 7.4.6 it ElESEStorm

o HIXHERZHNZIT, StormBT{ERIR FEIF::

*AT8 Topology(FFHIR A MTEStormE= Fim 15 m i1 T,

12 fE, HNimbusTI R Bosa HAtBSupervisor RuH{T4b

i

‘NimbusTI R B BRI Topologyift T/, DA 1. §4 Topology
NTask, HERLSHEMNAISupervisor, Fi5Taskid
SupervisortfgxAY= 212332l ZookeepersERf
*Supervisor&zZZookeeperSfF LIANGE 2/ Task, @B Client
H Sl Workenf 217 TaskiyLbIE

A TERRAR T — TopologyZ fa, StormFi=elsE
Spout/BoltsSLFH# TR, Z2fa, BRFWLAIAE R
XS FrERUES TR 28 (B)Supervisorti/R), E&—1
15 LR 5B

Nimbus

Supervisor

Worker

Task

| 2 BT 55 A7 {£ Zookeeper

Zookeeper

TS

Task

3. FREUOEEIAT 55, 3 )5 siWorker

4. Worker#t B2 AT B AR AT 45

Storm T{ERET~RE



2> 7.4.6 it ElESEStorm

4.Spark Streaming5Stormf¥JLL

Spark StreamingF1StormeE ARIX BI7EF, Spark Streaming7s
ZASLEMRAIRITE, MuStorma] LASCIIEZRP R IR

*Spark Streamingt@iE1ESpark £, —/HHEIEEISparkfEERHIT
5|2 (100ms+) BILABFSLRYIHE, B—m, tHttFStorm, RDD
HIREER S MEHIAELIE

*Spark StreamingXFEYV/ ML EIERGTVEEE R L RNFEIE

FOSCHTSERAMBABIERESE, EIL, 7518 7 — LR PARAI
DA o 2 e

TS



2> 7.4.6RitE

TS

}‘AJﬂjﬂ*EE/JJ\IE

{EZ28Storm

R, StormZLUERIRERIEE, BffEFApache

Thrift, BJLARMEAIRIEIESRMEIRFNED (Topology)
AEET—EEHPIERITEMELTR. Y2sFS. SQLEEY
e Lﬁ%éHT o] LUk Spark Streaming, EJ79, 7ESpark b
B LA —EBZE Spark SQL, Spark Streaming, MLIib, GraphX&s
B, REEEN—MURERE

N A EEEEMRIAET, 5TLA%EEStorm, HE/9Spark
Streaming 7o ASLIMEF KAVRITE



22> 7.4.7 i HESHELOFlink

1.Flink{&71

Flink2ApacheZ{FEESNTNRIE 2—, B— 1 EXnEdEfiit#uEn o Vit EHESR,
RITBEEERIRTHadoop. MPPEIREEE, MiItHEARERZ, FlinkEEZHJavafUiSsLila],
HelTErEAREF Rt XNERImARE. FlinkifEANENTEZEEREEE, HEERER
HHERI—NMEAIME, B2, FlinkSIBBES SRR, Flinke] LSS A iRy HRIE
ISR AR — IR ANE (TS

TS



22> 7.4.7 i ESIESEFlink

TS

FinkEARRAN AR NAEZER G (NEFR) |, AEEERZEZEE TNEEM E. BANmS,
FlinkBYBREUS MO0 T

SR T EERAMERIDataStream APIFImE AN EAIDataSet API, DataSet APl Sz#FJava, Scala
F1Python, DataStream APISz¥5Javaf[IScala;

TR T SMREIE LR, LLUAMIET (Local) . &&H&EI\ (Cluster) FI=t=z( (Cloud) . X
FEEHEAMS, JLLRMIZIEI (Standalone) & YARN;

SR T —LEKE, GETable WMEEIEREIR) . FlinkML (F188%3) . Gelly (EB{&AIE) F

CEP (E#Z=4401E)
Tm@k?ix&%El’JHadoop%éri AMNATLASZIFYARN, A8 7 #FHDFS, HBaseFHUER,



22> 7.4.7 i HESHELOFlink

= = 2

= = “w
S g 3 g
"= = = = = = =
= (=W = L = =
= | &~ B | =2 S = s | = = | 2 £
= =2 2| 82 E 2|3 E| B =
3 o = — 22 = = o0 = R
= DataStream API DataSet API
=%
< Stream Processing Batch Processing
w Runtime
5 Distributed Streaming Dataflow
=: Local Cluster Cloud
=
é’ Single JVM Standalone , YARN GCE , EC2

FlinkZ22+4) ]

P RS A BE S R A SR RS R b
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TS

7.4.7 it EHELSFlink

Flink¥0Spark—t¥, #EETHEFLITEIES, Eib, ZaLERERFHISSRTEIEERE.
HeFfiziTEHadoop YARNZ LAY, FlinkB9eEEE A ERSIFFSpark, EA, Flinksz
FEEiXN, BEEXNEHTENCEITIEE. Flinkf1Spark Streaming&Bsz4Fitit&,
TERNXBIET, Flink@— 171710 EE0E, mMSpark Streaming 22 FRDDHJ/MRY
SR8, LA, Spark StreamingfERTCANESE, AREAMSIEIN—LESERT, SCHYME
RBFIinkiF, FlinkBSRITESREFIStormEAREZ, FLASIEFEMRAME, mSpark
StreamingM RBESZIFFPRIMAL, SYATIS, FlinkfISpark&B2IFEMNFIIETAEFIS
INIHENEZR, (B2, Spark@Imiasin DA XiEEKERRERIIFlink, XE—ERE
_FPR&I T Flinkfy & R=Sa).



22> 7.4.7 i HESHELOFlink

2 Flink 28R T EiESE

"R EREERRMIER., SIS 4eEaYTE, MmERNm LEBIFRKE, RE
Flinke] LUBEEK, StormEARJUAMEWERIER, B ESLMEEN, AR seEifE g iE
FEANEITENRS., Spark Streamingi@iII SRARHINIEFASLIL ¥ S ASE M, (B2
T{RZERFISEATAMIERES]. Structured StreamingRFRIFEAMEERY RS o] LA =R A9 SCAT
h, BE, XRLUE—EMEAMNEY, FEBRR RegEzE =0 —RB—30%E, miE
Ribinzimiee—801E,

*FlinkSCEN 7 Google DataflowifiitEREl, B—M3RESEL. (KBRS EERISCRNRITEE
28, FHHRBENSEHEANBEFIRANE, b, FlinksSiSaEREINRESETE, BHILRSETSITE
FREARRFEMEINESK. AL, Flink§ipk/o T 8efgimE MG IEZRUERAVIEERRITEESE.

TS



22> 7.4.7 i ESIESEFlink

3. Flink{d 2R 5:4

SNEIFF7~, FlinkRFEEEZRMNEAGHERK, 57550/9JobManagerfiTaskManager, Flink ZEft21E1F
Master-SlaveZ2#3i&it RN, JobManagerIMastertir, TaskManager/ISlaveTs /.

2 ) Task
Manager
[ Flink Program ]

|
|
|
|
|
|
|
: Task
|
|
|
|
|
|
|

Manager

o e

Task
Manager

| Task
\ i Manager

Flink{xZ 2849

TS



2> 7.4.6 it ElESEStorm

AR, AAEELEERAIREZSARRAR. 1E2R, AP, FFRIESHISDK,
RIEARENEIISREAFAER, FrERTBESHAMapReduceif {7t R, F
Spark SQLIF{TRZ B AR, FAFlnksEIEERHRAE, ARG rlsEREIETF=imHINEES
SHEZE., KREMNFREAEUES (Eki0MapReduce. Spark. Flink, Storm. ApexZ) ,
NAFIEFASRETEENTENER, ENTHAEIERSETENEE, THE
XSFHNTHIFAERREZULL, Ao IEELR A semRESaIMRE. EEX
FIUTHEEFNE{RRVEIR, B2, AFPTIREEIS AN EEZENRNMtEIFEE A —FE
FI— NI EUREAIEIEZR, HEEMERWSZIE, BFRXANERBEREER
o Bk, EEIRERE, EBR—. e hEuEEEKR, fltn, fi—
HEIEFDRALIRRYTESK,; BEDR, SRl n UL IE(ESS, NIZEEBAESZ D IR
17512 (WNSpark, FlinkE) EHIT, BRTLABRTES SR IRESAIHITS |28
S5H1TIME, Apache BeamPYHHEL, FLE2 N 7 #EAXNERE,

TS
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EREEA IR, AARELEERZIEZAEIRR. B8, AP, FAIESHISDK, RIEAE
BN S RFEF AEK, FREREESAMapReducei# T#lAME, FSpark SQLIATRENE
18, FAFIinkSEHISCRTARANE, A eRRIE T =iniIgEEIESE, KENFHEASIERE (b
d0MapReduce, Spark. Flink, Storm. ApexZ) , NAZFEFABRETFENIENERN, B
EIN T AAEEFESETENEE, TENTFAANTHRAERRERNL., Ao EESE
A Eem KR SERE. FRAAITIEEFNIERANER, B, BPYIREIFERIS VA IREZEAYN
BIEEA—FEFZI— NI AREUEGIEESE, HEEMENISESEE. HRX/ NS ERE
ERNERD: B, EE— MR, BEs—. IeohladEcEnNSEk, flan, F—itht
IBAIRAIERES,; BUR, ElIn N EUEN RIS, MIZEEBESR o HITSIZE (10
Spark, FlinkZ) 17, AFRILABRYIES Sl SR IE(ESAIHRITS BB SHITIRE. Apache
BeamfYHIL, B2 T HRXN A,

TS
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TS

MNERR, ZimFAFHABeamEsLIIH CRTERITETIIEE, FRANARIRESAIEEPython,

JavaZs, BeamABFMESIEM T — I MAISDK, HFELAERENAISDKAIFEEIEIEEE,
RBREHAIRER A LABIE TESZ M Runner £, 8 RunnergfsLI] 7 MBeamE 1B ESE S IHEEAYMR
5., BRI AEUREATEMELSFlink, Spark, ApexUAKRAIHICIoud DataFlowZs, #HE T zi%
BeamfyRunner, EIihHXfEI, Beamﬁﬁﬁ—ﬁ%‘??ﬁﬂ%ﬁ’]APIﬁﬂ?ﬁ?‘éﬂlﬁggIE%EI’JIZnJ FF
REREERE—ERBMILUETEARITES|ZEZ L (LbalApex. Spark, Flink, Cloud

Dataflowss) .
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X S
| | |

Other Beam
Languages Python

ik

Beam Model:Pipeline Construction

il il

Runner A Cloud Runner B

Beam Java

Dataflow

Beam Model: Fn Runners

= M

Execution Execution Execution

P Beam{EB—E=EMRAIAPIFIRSTITES

ZHIX5!



22 7.4 98583 tFZEFDremel

TS

Dremel2—M Ay BRY. RXEDRSEHNERRS, BTRIZRENE
RIS, BEEESSRIPAPITERES GRS, CreEEI IR
SRS D{ZIKRRIIREEIR., RFALY REIRKRTLACPUL, HE
gi%ﬁtE%FT%’EPBé&E’\EﬁE, AT LATE22 3 e RPB R BlIEE
JEIH,

DremelEBLA T I EERFR:

(1) Dremel2— 1M AHUR. RENRS.

(2) Dremel@MapReducezz B\ EIAREIAEHIANTE.

(3) DremelfYEHERELEHRERY.

(4) DremelRVEHERR%IZNFERY.

(5) DremelZE& T WebiEZ=F0F+17DBMS (Database Management
System) BIFIA.
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TS

7.5 FFIE

KEME IR ST REREIBGES oIH— KR, IhY, EACKARFAESLEEZFERE
TS, HSEEIJFEEEIsER L, B2, ELARXER, 7 ENTE, EERMNEFRIVEFE
a7 ohiER. DHhEFRFASZE—NMEREZNTIE, BEERE/IME, BE,
MapReduce, SparkfIFlink&ESfVITEEZRNHIN, KAKEET shiEFFAEARNIT{ERIE,
éf%%;;?%s’gzﬁﬁ AT LASEIEZ M5 VT ERRR, WA LAZ o FIR TS ERfiEEE ARy
HIEDHTRESD.,

AEABTTHIREES IS TNE, FFAER 7 REYEIE S iRK R R T M.
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